Go to the first, previous, next, last section, table of contents.
This chapter describes functions for evaluating and solving polynomials.
There are routines for finding real and complex roots of quadratic and
cubic equations using analytic methods. An iterative polynomial solver
is also available for finding the roots of general polynomials with real
coefficients (of any order). The functions are declared in the header
file gsl_poly.h
.
The functions described here manipulate polynomials stored in Newton's divided-difference representation. The use of divided-differences is described in Abramowitz & Stegun sections 25.1.4, 25.2.26.
a x^2 + b x + c = 0
The number of real roots (either zero or two) is returned, and their locations are stored in x0 and x1. If no real roots are found then x0 and x1 are not modified. When two real roots are found they are stored in x0 and x1 in ascending order. The case of coincident roots is not considered special. For example (x-1)^2=0 will have two roots, which happen to have exactly equal values.
The number of roots found depends on the sign of the discriminant b^2 - 4 a c. This will be subject to rounding and cancellation errors when computed in double precision, and will also be subject to errors if the coefficients of the polynomial are inexact. These errors may cause a discrete change in the number of roots. However, for polynomials with small integer coefficients the discriminant can always be computed exactly.
This function finds the complex roots of the quadratic equation,
a z^2 + b z + c = 0
The number of complex roots is returned (always two) and the locations of the roots are stored in z0 and z1. The roots are returned in ascending order, sorted first by their real components and then by their imaginary components.
This function finds the real roots of the cubic equation,
x^3 + a x^2 + b x + c = 0
with a leading coefficient of unity. The number of real roots (either one or three) is returned, and their locations are stored in x0, x1 and x2. If one real root is found then only x0 is modified. When three real roots are found they are stored in x0, x1 and x2 in ascending order. The case of coincident roots is not considered special. For example, the equation (x-1)^3=0 will have three roots with exactly equal values.
This function finds the complex roots of the cubic equation,
z^3 + a z^2 + b z + c = 0
The number of complex roots is returned (always three) and the locations of the roots are stored in z0, z1 and z2. The roots are returned in ascending order, sorted first by their real components and then by their imaginary components.
The roots of polynomial equations cannot be found analytically beyond the special cases of the quadratic, cubic and quartic equation. The algorithm described in this section uses an iterative method to find the approximate locations of roots of higher order polynomials.
gsl_poly_complex_workspace
struct and a workspace suitable for solving a polynomial with n
coefficients using the routine gsl_poly_complex_solve
.
The function returns a pointer to the newly allocated
gsl_poly_complex_workspace
if no errors were detected, and a null
pointer in the case of error.
The function returns GSL_SUCCESS
if all the roots are found and
GSL_EFAILED
if the QR reduction does not converge.
To demonstrate the use of the general polynomial solver we will take the polynomial P(x) = x^5 - 1 which has the following roots,
1, e^{2\pi i /5}, e^{4\pi i /5}, e^{6\pi i /5}, e^{8\pi i /5}
The following program will find these roots.
#include <stdio.h> #include <gsl/gsl_poly.h> int main (void) { int i; /* coefficient of P(x) = -1 + x^5 */ double a[6] = { -1, 0, 0, 0, 0, 1 }; double z[10]; gsl_poly_complex_workspace * w = gsl_poly_complex_workspace_alloc (6); gsl_poly_complex_solve (a, 6, w, z); gsl_poly_complex_workspace_free (w); for (i = 0; i < 5; i++) { printf("z%d = %+.18f %+.18f\n", i, z[2*i], z[2*i+1]); } return 0; }
The output of the program is,
bash$ ./a.out z0 = -0.809016994374947451 +0.587785252292473137 z1 = -0.809016994374947451 -0.587785252292473137 z2 = +0.309016994374947451 +0.951056516295153642 z3 = +0.309016994374947451 -0.951056516295153642 z4 = +1.000000000000000000 +0.000000000000000000
which agrees with the analytic result, z_n = \exp(2 \pi n i/5).
The balanced-QR method and its error analysis is described in the following papers.
Go to the first, previous, next, last section, table of contents.