
PDFgen graphics API test script

Page 1

Hello World
This tests a low-level API to the PDF file formac. It is intended to sit
underneath PIDDLE, and to closely mirror the PDF / Postscript imaging
model. There is an almost one to one correspondence between commands
and PDF operators. However, where PDF provides several ways to do a job,
we have generally only picked one.

The test script attempts to use all of the methods exposed by pdfgen.PDFEngine.

First, let's look at test output. Here are the basic commands:

canvas.enterTextMode() must be called before text operations
canvas.exitTextMode() must be called after text operations
You can do graphics in between calls, but no coordinate transforms
or clipping.

canvas.setTextOrigin(x, y) sets the text origin
canvas.getCursor() returns the current text cursor

canvas.textOut(text) writes text, and moves the cursor to the righc.
canvas.textLine(text) writes text, and moves the cursor down 'leading'.
This means textLine() is faster - no need to do a stringWidth!

canvas.textLines(stuff) accepts a multi-line string or a list/tuple
of strings, and moves the cursor down the page.

The green crosshairs test whether the text cursor is tracking correctly.
textOut moves across:textOut moves across:textOut moves across:
textLine moves down
textLine moves down
textLine moves down

This is a multi-line
string with embedded newlines
drawn with textLines().
This is a list of strings
drawn with textLines().

Small text.Bigger fixed width text.Small text again.

Line Drawing Styles

Page 2

the default - butt caps project half a width

round caps

square caps

Default - mitered join

round join

bevel join

dash pattern 6 points on, 3 off- setDash(6,3)

dash pattern lengths growing - setDash([1,2,3,4,5,6],0)

Shape Drawing Routines

Page 3

Rather than making your own paths, you have access to a range of shape routines.
These are built in pdfgen out of lines and bezier curves, but use the most compact
set of operators possible. We can add any new ones that are of general use at no
cost to performance.

canvas.line(x1, y1, x2, y2)

canvas.bezier(x1, y1, x2, y2, x3, y3, x4, y4)

canvas.rect(x, y, width, height) - x,y is lower left

canvas.wedge(x1, y1, x2, y2, startDeg, extentDeg)
Note that this is an elliptical arc, not just circular!

Use a negative extent to go clockwise

canvas.circle(x, y, radius)

Font Control

Page 4

Listing available fonts...

This should be Courier
This should be Courier-Bold
This should be Courier-BoldOblique
This should be Courier-Oblique
This should be Helvetica
This should be Helvetica-Bold
This should be Helvetica-BoldOblique
This should be Helvetica-Oblique
This should be Symbol
This should be Times-Bold
This should be Times-BoldItalic
This should be Times-Italic
This should be Times-Roman
✴❈❉▲ ▲❈❏◆●❄ ❂❅ ✺❁❐❆✤❉■❇❂❁▼▲

Now we'll look at the color functions and how they interact
with the text. In theory, a word is just a shape; so setFillColorRGB()
determines most of what you see. If you specify other text rendering
modes, an outline color could be defined by setStrokeColorRGB() too

Green fill, no stroke
Green fill, red stroke - yuk!

Coordinate Transforms

Page 5

This shows coordinate transformations. We draw a set of axes,
moving down the page and transforming space before each one.
You can use saveState() and restoreState() to unroll transformations.
Note that functions which track the text cursor give the cursor position
in the current coordinate system; so if you set up a 6 inch high frame
2 inches down the page to draw text in, and move the origin to its top
left, you should stop writing text after six inches and not eight.

0. at origin

1. translate near top of page

2. down 2 inches, across 1

3. down 3 from top, scale (2, -1)

4. down 5, rotate 30' anticlockwise

5. down 5, 3 across, skew beta 30

Clipping

Page 6

This shows clipping at work. We draw a chequerboard of rectangles
into a path object, and clip it. This then forms a mask which limits the region of
the page on which one can draw. This paragraph was drawn after setting the clipping
path, and so you should only see part of the text.

This shows clipping at work. We draw a chequerboard of rectangles
into a path object, and clip it. This then forms a mask which limits the region of
the page on which one can draw. This paragraph was drawn after setting the clipping
path, and so you should only see part of the text.
This shows clipping at work. We draw a chequerboard of rectangles
into a path object, and clip it. This then forms a mask which limits the region of
the page on which one can draw. This paragraph was drawn after setting the clipping
path, and so you should only see part of the text.
This shows clipping at work. We draw a chequerboard of rectangles
into a path object, and clip it. This then forms a mask which limits the region of
the page on which one can draw. This paragraph was drawn after setting the clipping
path, and so you should only see part of the text.

You can also use text as an outline for clipping with the text render mode.
The API is not particularly clean on this and one has to follow the right sequence;
this can be optimized shortly.

Python!
spam spam
spam spam
spam spam
spam spam
spam spam
spam spam
spam spam
spam spam
spam spam
spam spam
spam spam
spam spam
spam spam
spam spam
spam spam

Images

Page 7

This shows image capabilities. If I've done things
right, the bitmap should have its bottom left corner aligned
with the crosshairs.
PDFgen uses the Python Imaging Library to process
a very wide variety of image formats. Although some processing
is required, cached versions of the image are prepared and
stored in the project directory, so that subsequent builds of
an image-rich document are very fast indeed.

image drawn at natural size

image distorted to fit box

